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292 A.F. WELLS

Structures built from tetrahedral AX, groups that share some or all of their X atoms
may be classified according to the numbers of tetrahedra to which the X atoms
belong. If v, is the number of X atoms of each AX, group in a structure of
composition A,, X, which are common to x such groups (that is, x is the coordination
number of X) then Xv, = 4 and X(v,/x) = n/m. The solutions of these equations for
any composition A,, X, may be examined systematically. The present survey is
restricted to structures which can be constructed from regular tetrahedral AX,
groups, all of which share their X atoms in the same way and have no X-X
separations shorter than the edge of a tetrahedron. A study is made of the types of
possible structure, finite, one-, two- or three-dimensional, and the emphasis is on the
topology rather than the geometry of the structures.

1. INTRODUCTION

The two most important coordination polyhedra in crystal chemistry are the tetrahedron and
octahedron. Structures of composition AX,, and A,X, built from regular octahedral AX,
groups have recently been surveyed (Wells 1984¢); here we attempt a survey, on similar lines,
of structures built from regular tetrahedral AX, groups. There is an indefinitely large number
of ways of joining together tetrahedra to form structures which may be finite or extend
indefinitely in one, two or three dimensions. We shall consider structures in which only vertices
or edges are shared, for face-sharing results in very short A—A distances and is not observed
in actual crystal structures, and we shall limit the survey to the compositions listed in table 1.
Also we shall introduce the following restrictions: (i) the arrangement of shared vertices or
edges of each tetrahedron is the same (or its mirror image if the arrangement is chiral); (ii)
it must be possible to build the structure from regular tetrahedra; (iii) all distances between
X atoms of different tetrahedra must be at least equal to the length of the edge of a tetrahedron
(this is what is meant later by ‘acceptable X-X distance’).

Each X atom of each AX, coordination group is bonded to some number, x, of A atoms;
this number, the coordination number of X, may be different for different X atoms. If v, is
the number of X atoms of each AX, group which belong to x such groups, then Zv,, = 4 and
2(v,/x) = n/m in a compound A,, X,,. Solutions involving values of x > 8 are omitted from
table 1 because no more than eight regular tetrahedra can meet at a point while maintaining
acceptable X-X distances. x = 5 and x = 7 are excluded because there are no solutions of the
equations involving these values of x for the formulae listed in table 1. The primary
classification of table 1 is only the first step in deriving and describing tetrahedral structures,
and two general points should be mentioned here before proceeding to the systematic
derivation of structures.

The first is that not only are there several solutions for most compositions A,, X,, but also
a particular solution of the equations may usually be realized in more than one way, by the
sharing of vertices only, edges only or by some combination of edges and vertices. For example,
the solution v, = 4 for AX, is the result of sharing (a) each vertex with one other tetrahedron,
(b) two vertices and one edge or (¢) two edges which have no common vertex. The description
of many structures is simplified by describing them in terms of the number, p, of tetrahedra
to which each is joined by sharing X atoms, either singly as shared vertices or in pairs as shared
edges. In the above types of AX, structure the values of p are 4, 3 and 2 respectively. The
underlying systems of p-connected points on which a structure is based range from a pair of
points (p = 1) through rings or chains (p = 2) to systems in which each point is connected to
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TABLE 1. TETRAHEDRAL STRUCTURES CLASSIFIED ACCORDING TO THE NUMBERS (v, ) OF
X-CONNECTED VERTICES

formula class vy vy g v, vg vg examples
AX, 4 — — — — — XeO,
A X, 3 1 — — — — CL0,, S,027, P,0O%, Si,08~
AX, 2 2 — — — — AlLClg, S;0,, S€,04,.(SO;),
ApX, I 1 3 — — — — P,O,,, (Cu,Sijg)Na,, (Be,O;)Li,
IT 2 — — 2 — — —
2 — 1 — 1 — e
AX, I — 4 — — — — SiO,, Hgl,, Znl,, (GaP)S,
11 1 — 3 — — — AlOCl, GaOCl
111 1 1 — 2 — — —
1 1 1 — 1 — —
A X, I — 1 3 — — — Si,N,0O, Ga,S,
11 — 2 — 2 — — (Cu,Cl,)Cs
IT1 1 — — — 3 — —
1 — — 1 — 2 —
— 2 1 — 1 — —
AX, I — — 4 — — — Si;N,, Be,SiO,, Cu,Hgl,
— 9 — _ 9 _ _
— 1 1 2 — — —
AX I — — — 4 — — ZnO, ZnS, BeO, OPd, SPt, OPb, LiOH
11 — 1 — — 3 — —
— — 2 — 92 — —
— — 1 2 1 — —
AX, I — — — 1 3 — —
11 — — — 2 — 2 (Cu,S;)K
AgX, - - - - 4 - Be;N,, P3Mg,, O;Mn,
A, X — — — — — 4 Li,O, Li,S

three or more others, when structures of all four major types (polyhedral or extending
indefinitely in one, two or three dimensions) become possible. (A particular type of structure
may not be possible in all cases, for purely geometrical reasons, for example, polyhedral AX,
structures of class I built from tetrahedral AX, groups.) It is perhaps worth noting here that
one of the less familiar types of infinite one-dimensional structure, the tubular chain, is
intermediate from the topological standpoint between polyhedra and two-dimensional nets. A
polyhedron may be represented as a net of connected points (tessellation) on a closed surface
(for example, a sphere) whereas a two-dimensional net is a tessellation on an infinite surface (for
example, a plane surface). The tubular chain corresponds to a tessellation inscribed on a
cylindrical surface, and results from wrapping a strip of two-dimensional net around this
surface which extends indefinitely in one dimension. Tetrahedral structures based on tubular
chains will be noted for the compositions A,X; and AX,.

The second point is that this classification is based on the coordination number of X and,
whereas the bond angles at an A atom are defined by condition (ii) as six of 1093°, there is
apparently no reference to the interbond angles at X which are obviously an important feature
of any actual crystal structure. However, certain limitations on these bond angles are implicit
in the restrictions (ii) and (iii) taken together. If we insist that the distance between X atoms of
different tetrahedra must be at least equal to the length of a tetrahedron edge, then if two
tetrahedra share a vertex the angle A-X—A may range from 180° to 102°, but if an edge is
shared one A-X-A angle at each X atom must lie within the very small range 66°-701°.
Considerable distortions from such a structure are to be expected in actual crystal structures
because of the small value of this angle in the ‘idealized’ structure built from regular tetrahedra.

25-2
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This is illustrated later by the structure of SPt, in which S forms tetrahedral and Pt coplanar
bonds. A related point is that some tetrahedral structures in which X is four-coordinated can
be constructed only if the bond arrangement is essentially coplanar as opposed to tetrahedral
(as in SPt) or pyramidal (as in the OPb layer). A similar problem is encountered in
three-dimensional nets. For example, the cubic diamond net is derived topologically, that is
as a system of four-connected points in which all shortest circuits contain six points, without
reference to geometrical factors (bond lengths or interbond angles). However, such a net (6°)
cannot be constructed with coplanar bonds from each point and, conversely the four-connected
net 6282 which represents the structure of NbO cannot be constructed with tetrahedral bonds
at each point.

The present study, like the survey of octahedral structures, is a logical sequel to the study
of two- and three-dimensional nets for the gross topology of many structures may be described
in terms of the number of tetrahedra to which each is joined, whether the junction be a single
vertex or a shared edge. The relation of structures to nets is clearly seen for A, X, structures
of class I in which each tetrahedron shares one vertex with each of three other tetrahedra or
for AX, structures of class I(5) in which each tetrahedron shares one edge and two vertices.
In structures of both types each tetrahedron is connected to three others, and therefore the
resulting structures must be based on three-connected systems; these could be finite or extend
indefinitely in one, two or three-dimensions.

We shall refer to a number of three-dimensional nets by symbols which are analogous to the
Schliffli symbols for polyhedra and two-dimensional nets. These symbols indicate the smallest
polygonal circuits of which the net is composed, a circuit being defined as the shortest path
starting from a point along one link and returning to the starting point along another link.
In a p-connected net there are 2p(p—1) ways of selecting two of the links that meet at a point.
It is therefore necessary to specify three circuits for a three-connected net, six for a
four-connected net, and so on. A three-dimensional three-connected net in which all the
shortest circuits are n-gons has a symbol #* and the known nets of this type (uniform nets),
namely, 73, 83, 93, 10 and 123 represent the continuation of the series that begins with the
tetrahedron, 3?, hexahedron, 4, pentagonal dodecahedron, 53, and planar net, 63. In two
dimensions there is the unique 6® net but, except for 123 there are several uniform
three-dimensional three-connected nets with the same numerical symbol; these are distinguished
as n-an®b and so on. Corresponding to the Archimedean solid, 4.62, (truncated
octahedron) and the two-dimensional net, 4.82, there is a double layer, 4.102, and three-
dimensional nets, 4.122, 4.14% and 4.16% An introduction to nets is available (Wells 1984.4)
and also more detailed treatments (Wells 1977, 1979).

We now consider how the formulae listed in table 1 may be realized as structures built from
regular tetrahedra. Detailed descriptions will not be given of structures which are adequately
described elsewhere.

2. TETRAHEDRAL A,X, STRUCTURES

The only possible structure is a pair of tetrahedra sharing one vertex, as in Cl,0,, oxy-ions
formed by S, P, Si, etc., and ions such as ALCl;.
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3. TETRAHEDRAL AX, (A,X;) STRUCTURES

The single solution (v, = 2,0, = 2) can be realized in two ways: by the sharing of two
separate vertices or of one edge. The first leads to the familiar cyclic and linear molecules S;0,,
Se,O,, and (SO,),, and the meta-ions of, for example, phosphorus and sulphur. The sharing
of one edge gives the dimer A,X; of halides such as AICl, and FeCl; in the vapour state and
of AlBr,, GaCl, and Inlj in the crystalline state.

This dimer is the first member of the family of structures listed at the left of table 2 and
illustrated in figure 1. This figure also illustrates a family of A,X; structures if figure 1a
represents the projection of a double chain of edge-sharing tetrahedra normal to the plane of
the projection The pair of v, vertices shown as a double circle then represents a column of v,
vertices, the X atoms forming four coplanar bonds. We refer later to the other structures of
table 2.

4. TETRAHEDRAL A,X; STRUCTURES

Structures may be built in both classes I and II of table 1.

(a) Structures of class 1: v, = 1,0, =3

The three v, vertices may be shared either (@) as separate vertices or (b) as an edge and one
vertex.

Class 1(a)

Each tetrahedron is joined to three others, and the relevant three-connected systems include
polyhedral, one-, two- and three-dimensional structures.

Polyhedral structures are based on three-connected polyhedra, of which the most symmetrical
are 3% (tetrahedron), 4% (cube) and 5% (pentagonal dodecahedron), prisms and certain of the
Archimedean solids. The three polyhedral complexes based on the regular solids and built of
tetrahedra AX, are illustrated in figure 2, plate 1; they have the compositions A, X,
(‘super-tetrahedron’), AX,,, and A, X;,. We refer later to the first two for they can be joined
through all their v, vertices to form more extensive AX, structures.

One-dimensional structures. The chain (figure 3) has various configurations with the unshared
vertices on one side or the other of the mean plane of the chain. This chain represents the
arrangement of the Si and four-coordinated Al atoms in sillimanite, Al(AISiOy), in which one
half of the Al atoms are four-coordinated and the remainder are in positions of octahedral
coordination. The family of prismatic structures, of which the A;X,, complex of figure 2 is the
second member, may be formed from portions of the chain of figure 3 joined end-to-end with
atoms such as A and A’ or B and B’ coinciding and all unshared vertices lying to one side of
the chain.

Tubular chains are formed by wrapping strips of two-dimensional nets around a cylinder
as shown in figure 4 for the 6% and 4.8 nets. The strips are joined along lines such as A and
B or A and C and so on. The simplest tubular chains formed from the 6® net were illustrated
some years ago (Wells 1954), but at that time no examples were known of actual crystal
structures containing tubular ions. Subsequently tubular chain ions built of SiO, tetrahedra,
based on 63 and 4 .82 and also on the more complex net (6.8?%) (4.6.8), of figure 54 have been
found in minerals and in the synthetic Na,Cu,Si,, (Kamamura & Kawahara 1977). Numerous
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Frcure 1. The family of related structures of table 2. (a) Pair of tetrahedra sharing an edge (A, X,), (4) trans and
cis AyX; chains and four- and six-membered rings, (¢) two configurations of AX, layer based on the 6 net.
©, tetrahedron edge perpendicular to the plane of the paper; 0, X atoms; @, A atoms of only one ring.
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TABLE 2. TWO FAMILIES OF RELATED TETRAHEDRAL STRUGTURES

figure 1  vertices formula type of structure vertices formula  type of structure
N v vy
(@) 2 2  A,X, finite (dimer) 2 — 2 A)X; chain (class IT)
(b) 1 3 A)X; ring or chain 1 1 2 AX, layer or tubular chain
(class I) (class IIT)
(¢) — 4 AX, layer or tubular chain — 2 2 A)X; three-dimensional
(class 1(d)) structure (class IT)
3

1
N
[
[
]
!
'
1
: |
|
|
0 :
Y
[ ]
[ I
[ 1
CA B
Ficure 3. The double A,X; chain of class I.
Ficure 4. Formation of tubular chains from strips AB, AC, and so on of plane nets.

(6)

Ficure 5. Three-connected plane nets on which certain layer structures are based: (a) the regular net, 63, (b, ¢)
the semi-regular nets 4.8% and 4.6.12 respectively, (d) (6.82) (4.6.8),, (¢) (5.82%) (528),.
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tubular chains are illustrated in Hefter & Kenney (1982) which describes the synthesis of the
mineral litidionite, NaK Cu,S1,,, the structure of which contains the same type of chain, based
on 4.8% as Na,Cu,Si,,.

Tubular chains built from tetrahedral AX, groups may be based on two-dimensional, three-
or four-connected nets, as will be noted later for AX, structures of classes I(a, ), I1(a, ) and
III.

Two-dimensional structures are layers based on three-connected nets, of which the simplest is
the hexagonal 62 net. Silicates are known with structures based on all the nets of figure 5. The
63 layer built from tetrahedra is illustrated in figure 6.

vl

AV
VAR A

Ficure 6. The tetrahedral A,X; layer based on 62.

A tetrahedral A,X; structure based on the double layer 4.102 (figure 6.15, page 85 in Wells
(1977)) can be built, but it has not been ascertained that it has acceptable X-X distances if
constructed from regular tetrahedra.

Three-dimensional structures are based on the numerous three-dimensional three-connected
nets. Examples of three types of structure are provided by P,O;, namely, the ‘super-tetrahedral’
P,0,, molecule, the layer based on 6%, and the three-dimensional structure based on 103-b.
Also based on 103-b are the anion frameworks of La,Be,O; and (Zn,Cl;) (H,O,), whereas that
of CsBe,F; is based on 103-a.

Class 1(b)

Here each tetrahedron is joined to two others by sharing one edge and one vertex, and
therefore only two-connected systems (rings or chains) are possible (figure 1 (4)). No examples
of this type of A, X, structure appear to be known.

(b) Structures of class 11: v, = 2,0, = 2

If the pair of tetrahedra of figure 1a represents the projection of a chain normal to the plane
of the paper the composition is A,X; (table 2), and each X forms four coplanar bonds. In
another configuration of the chain alternate pairs of edge-sharing tetrahedra are rotated
through 90° so that X forms four tetrahedral bonds (figure 7). No examples are known of either
of these structures.



SURVEY OF TETRAHEDRAL STRUCTURES 299

Ficure 7. Plan and elevation of A,X; chain of class II.

5. TETRAHEDRAL AX, STRUCTURES

These have been reviewed in an earlier article (Wells 1983). We take the opportunity to
include here a number of structures that were omitted from this account, notably those of
class ITI. Structures have been found in the three classes I-1II of table 1.

(a) Structures of class 1: v, = 4

The two-coordination of each X atom can be realized by: (a) the sharing of each vertex with
a different tetrahedron, () the sharing of one edge and two vertices or (¢) the sharing of two
edges which have no common vertex. The required structures are based on four-, three- or
two-connected nets in (a), (b) and (c) respectively.

Class 1(a)

Structures of all four major types (finite, one-, two- and three-dimensional) are topologically
possible because there are four-connected polyhedra, chains, layers and three-dimensional
structures. However, polyhedral complexes in which the A atoms would be situated at the
vertices of four-connected polyhedra cannot be built from tetrahedral AX, groups. (The
Pt,Cl,, molecule is an example of a polymeric (AX,), complex based on the octahedron, but
it is built from planar AX, groups.) Structures of three types are therefore possible in class I(a).

One-dimensional structures. Tubular chains may be formed from strips of planar four-connected
nets of various widths, as shown in figure 8 for the 4* net. The end-on view of these chains
show that they consist of vertex-sharing rings stacked one above the other.

Two-dimensional structures. Of the layer structures based on planar four-connected nets the
simplest, based on 4%, represents the structure of (red) Hgl, (figure 9a) and of the corrugated
ZnO, layer, the anion in Sr(Zn0,) (figure 954). Double layers are formed from pairs of the A, X;
layers of figure 5 related by a mirror plane, and the simplest of these, based on 6%, represents
the structure of the anion in Ca(Al,S1,04). The double layer formed from 4 .82 can obviously

be built from the cubical units AgX,, (figure 25).
Three-dimensional structures. Vertex-sharing AX, structures are based on the numerous

26 Vol. 319. A
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e e

Ficure 9. Tetrahedral AX, layers based on 4%: (a) Hgl,, (8) (ZnO,)Sr.

three-dimensional four-connected nets, and range from cristobalite-like structures based on the
simplest of these nets (the cubic diamond net 6°) to the complex frameworks of aluminosilicates
such as felspars and zeolites. The net formed from cubes at the nodes of the Bc lattice is related
to the tubular chain and double layer in the following way. All may be built from cubical AgX,,
sub-units. The eight v, vertices of this group are the two groups of four belonging to opposite
faces of the cube to form the tubular chain AC of figure 8, the four groups of two to form the
double layer based on 4.82, and the eight joined to eight different AgX,, groups to form the
BC structure. The symbols of the underlying nets are 456, 462, and 4383.

Structures of all the above types are also possible if the simple AX, groups are replaced by
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‘super-tetrahedral’ groups A, X, (figure 24). This group represents the structure of the P,O,,
molecule and of ions such as Si,S%;. Such groups may be joined by sharing each of the
outermost vertices with one other similar group to form AX, structures of class I(a). Examples
are the layer structures of orange Hgl, and the three-dimensional structures of ZnBr, (White
et al. 1984) and Znl, (Fourcroy et al. 1978). In the simplest three-dimensional structure built
from super-tetrahedra the A,X,, groups are situated at the nodes of the cubic diamond net,
but as yet there is no example of a compound with this structure.

The structures of ZnP, and ZnAs, are excluded from the present survey because although
they contain vertex-sharing tetrahedral AX, frameworks an essential feature of the structures
is the presence of covalent X—X bonds between X atoms of different tetrahedra; these are much
shorter than the tetrahedron edge. The distances in black monoclinic ZnP, are: P-P, 2.2A,
and P-P (edge of tetrahedral ZnP, coordination group), 4A (Fleet & Mowles 1984.)

Class 1(b)

Structures in which each tetrahedron is joined to three others by sharing one edge and two
vertices are of all four major types.

Polyhedral structures. The most symmetrical polyhedral structures are based on certain of the
three-connected regular and semi-regular (Archimedean) solids or on prisms. These based on
the tetrahedron or cube are not acceptable because they have very short X-X distances. The
most symmetrical form of the pentagonal dodecahedral complex is illustrated in figure 10a. We
may also rule out the A;,X,, structure based on the truncated tetrahedron because of short
interior X~X distances, but structures can be built which are based on the other six
three-connected Archimedean solids (table 3). There is not a unique structure corresponding
to each of these polyhedra. Isomerism is possible in this family of structures because an edge
of the polyhedron outlined by the A atoms may represent either a shared vertex (—) or a shared
edge (=), subject to the condition that the bond arrangement at each vertex is >A=. For
example, in the most symmetrical isomer of the truncated octahedral complex all four edges
of each square face correspond to vertex sharing and all hexagonal faces are of the same kind,
with alternate vertex and edge sharing, as shown in 1. In the less symmetrical cubic isomer
2 there are hexagonal faces of two kinds, and other less symmetrical isomers include five with

1 @ m3m isomer,
2 | ‘ O and © 43m isomer,

trigonal symmetry and possibly others of lower symmetry. There are at least two isomers of
each of the other five structures of table 3 based on Archimedean solids and of the pentagonal
dodecahedral complex, but only the most symmetrical isomers are illustrated (figure 10, plates 2
and 3). This isomerism is reminiscent of that of the octahedral Keggin complexes A ,X,,.
Since these polyhedral complexes, certainly the larger ones, are unlikely to form unless atoms
of some kind occupy the central void, we include in table 3 the shape of the polyhedral group
formed by the inner X atoms of each complex. The X atoms of each complex fall into three

26-2
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TaBLE 3. POLYHEDRAL AX, STRUCTURES OF cLAss 1(4): v, =4

four-connected polyhedron

three-connected polyhedron defined by inner (or outer)
defined by A atoms formula shell of X atoms figure 10

5% ApeXio 335 (a)
3.8 242 b

4.62} AeXas o Ec))
4.6.8 AggXoe 3.4° (d)
3. 102} A X 3252 (e)
5 62 602120 )
4.6.10 A% 210 3.4%5 (g)

groups. One half lie on links of the polyhedral shell, these being the shared vertices, and the
remainder, in equal numbers, lie at the ends of shared edges, within or outside this shell. The
isomerism of these complexes has not been studied in detail, but it has been observed that in
the isomers of type 2 of 4.62, 4.6.8, and 4.6. 10 the polyhedra defined by the inner X atoms
are, respectively, 3.62, 3.82% and 3.102%

——A—A—A— —A==A—A=— —A=A—A=
A e e
3 4 5

One-dimensional prismatic structures. We consider first the simplest chain, which is based on the
(three-connected) ladder, and then prismatic structures formed from portions of this chain.
There is an indefinitely large number of isomers of this chain; the simplest are shown in 3, 4
and 5. Two projections of the chain 4 are illustrated in figure 11. In figure 114 the shared edges
are perpendicular to the plane of the paper; in figure 114 one face of each tetrahedron is parallel
to that plane. The latter projection shows that the X atoms of this chain are in the positions

Freure 11. Two projections of the chain 4 (sce text).



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 1

;

Ficure 2. The polyhedral (A,X;), complexes A X ,, AgXy, and AygXs,. In models illustrated
by stereo-pairs rubber connectors represent X atoms.

(Facing p. 302)



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 2

FiGUure 10a~d. For description see opposite.



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 3

Ficurk 10. The polyhedral structures (AX,),, of table 3 based on (a) pentagonal dodecahedron, (4) truncated cube,
(¢) truncated octahedron, (d) truncated cuboctahedron, (¢) truncated dodecahedron, (f) truncated icosahedron,
(g) truncated icosidodecahedron.



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, ﬁlate 4

Fi1GURE 124, b. For description see opposite.



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 5

Ficure 12. (a) Prismatic structure A, X, formed from the chain 4, (b)—(d) tubular chains (see text).



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 6

F1GURE 24a—¢. For description see opposite.



Phil. Trans. R. Soc. Lond. A, volume 319 Wells, plate 7

Ficure 24. (a)—(c) Polyhedral AX, complexes of class II(): (a) icosahedron A}, X,,, () snub cube Ay X4, (¢) snub
dodecahedron AggX,,, (d) tubular AX, chain of class IT(5) (see text).

Ficure 28. Three finite (AX,), complexes: (@) A,Xg of class I1(d), (b) and
(c) AgX;p and A, X,, of class II(c).
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of closest packing. Such chains could therefore be packed side by side to form a pair of layers
of close-packed X atoms, between which A atoms occupy one half of the tetrahedral interstices.
The circles in figure 115 represent the X atoms of one close-packed layer.

Prismatic structures can be formed from portions of chains joined end to end. Those formed
from the chain 3 are not likely to form because the distance between X atoms belonging to
different shared edges is equal to the tetrahedron edge length in the fully extended chain, and
would be smaller in a prismatic structure. However, prismatic structures (A Xg), can be
formed from the chains 4 and 5 if # > 6; in structures formed from smaller portions of these
chains there would be short interior X-X distances. Figure 124, plate 4 shows the A,,X,,
structure formed from the chain 4.

The tubular chains formed from strips of two-dimensional nets wrapped around a cylinder
are conveniently described after the layer structures.

Two-dimensional structures. Layers are based on three-connected nets of A atoms, and we
consider first the simplest three-connected two-dimensional net 63. As in the isomers of the
polyhedral and chain structures different sequences of vertex- and edge-sharing tetrahedra in
a ring are possible. The two arrangements in which the sequence is the same in all rings are

shown below.
(L X000
(0 10
6 7

The corresponding layers built from tetrahedra are shown in figure 1¢, where the shared edges
are perpendicular to the plane of the layer. Figures 13, 14 and 15 show the tetrahedral layers
based on the nets 4.82%, 3.122 and 4.6.12.

An indefinitely large number of tubular chains may be built from strips of three-connected
layers. If horizontal strips of the layer of figure 1¢ (i) are joined along the lines AB... and A’B’...

(a)

® Q

@® © O
® QO

© O O
O ®

Ficure 13. Two isomers of the tetrahedral layer based on 4 .82
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Ficure 14. Tetrahedral AX, layer based on 3.122
Ficure 15. Tetrahedral AX, layer based on 4.6.12.

a tubular chain is formed (figure 124) in the direction of the left-hand arrow. This chain,
(A13X54) s has trigonal symmetry and horizontal and vertical planes of symmetry. If the joins
are made at AB’... and so on instead of AA’... the result is a helical chain (figure 12¢). Joining
vertical strips at points such as GC’, DD’, and so on produces chains extending in the direction
of the upper arrow. The simplest of these chains which has acceptable X—X distances in the
interior of the chain is the (A;4X;,), chain of figure 124.

There is a second configuration of the layer of figure 1¢(i) in which the shared tetrahedron
edges are inclined to the plane of the layer which is of special interest as having the most
compact arrangement possible of X atoms. This is illustrated in figure 16; the right-hand
portion shows two rings of six tetrahedra and the left-hand portion indicates the basic topology
of the layer. The X atoms form two parallel close-packed layers but only those of the lower
layer are shown (larger open circles), and the A atoms at the two levels are indicated as small
open and filled circles. This type of layer may be described as the tetrahedral analogue of the
octahedral AX, layer (of Cdl,, GdCl,, and polytypes), that is, a layer in which one half of
the tetrahedral interstices are occupied by A atoms between a pair of layers of close-packed
X atoms. No example is known of an AX, compound with a structure of this kind, but in GaPS,
(Buck & Carpenter 1973) tetrahedral groups (alternately GaS, and PS,) each share an edge
and two vertices to form such a layer. The Ga and P atoms together occupy one half of the
tetrahedral interstices between alternate pairs of close-packed S atoms. However, the net of
Ga and P atoms on which the layer is based is not the simplest planar three-connected net but
the 4.82 net (figure 17). It is therefore of interest to discover whether there are similar layers
with close-packed X atoms based on the other two semi-regular two-dimensional three-
connected nets, namely 3.12% and 4.6.12. It appears that the only two AX, structures of this
family in which the X atoms form two complete close-packed layers are those based on 6® and
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F1cure 16. Second configuration of AX, layer of class I(5) based on 62 (with shared edges inclined to plane of paper).
At the left the heavy full lines and the broken lines connect A atoms and outline the basic net on which the
layer is based.

Ficure 17. Second configuration of AX, layer of class I(4) based on 4.82.

4.8%; in the layers based on 3.12% and 4.6.12 (figures 18 and 19) the X atoms occupy
respectively 2 and 2 of the close-packed positions.

Three-dimensional structures. It was noted in the earlier account that tetrahedral AX, structures
based on three-dimensional three-connected nets are numerous, but they were not examined
systematically. The construction of models has subsequently shown that structures can indeed
be built which are based on each of the nets 83-a, 83-b, 93-a, 103-b and 103-c; the last two have
been described (Wells 19845). The structure based on the tetragonal configuration of 10%-b
and built from regular tetrahedra with collinear A-X-A bonds projects on (100) as in
figure 20 ¢, which shows one ring of ten tetrahedra. There are unacceptably short X—X distances
of 0.73 times the length of a tetrahedron edge between the chains (dotted lines), and these are
also seen in figure 204, which shows two chains projected on (001). This difficulty is overcome
by ‘shearing’ the structure (figure 20¢) when the X atoms in the bases of the tetrahedra form
a close-packed layer, and the remaining X atoms occupy one third of the positions of closest
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Ficure 19. Second configuration of AX, layer of class I(6) based on 4.6.12.

packing on each side of the cp layer. These ‘layers’, strictly sets of parallel chains, may be
stacked in various ways and joined by sharing the X atoms which are not shared in the chains.
Stacking of the layers vertically above one another gives a set of discrete layers based on 62
perpendicular to the projection of figure 20¢. Alternatively, successive layers may be rotated
relative to one another through 60° (or 120°), the chains lying in the directions (i), (ii), or (iii),
to form a family of three-dimensional structures. There are two different structures which
repeat after two layers (along ¢) because the sequences (i) (i) and (i) (iii) result in ¢ or 4¢ packing
of the X atoms, respectivelyf. There is a similar pair of structures, with three-layer repeats,
based on 103-c, and a series of polytypic structures in all of which the X atoms occupy two thirds

1 Ina concise nomenclature for close-packed (cp) structures a layer is denoted by % if the two neighbouring layers
are of the same kind, i.e. both A, both B, or both C, or by ¢ if they are of different kinds. Hexagonal closest packing

(ucp) is then denoted simply by £ (i.e. Akh...) and cubic closest packing (ccp) by ¢. The symbols for more complex
layer sequences include both £ and ¢ (for example, chch for ABAC...).
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Gy

Ficure 20. (a) Projection on (100) of tetrahedral structure based on 10%-b showing one ring of ten tetrahedra;
(b, ¢) projections of two chains on (001) in the orthogonal and sheared forms, respectively, of the structure.

of the positions of more complex types of closest packing. Since the positions of the X atoms
in any one chain are those of cubic closest packing alternate layers must be ¢ layers, from which
it follows that the cp symbol must contain an odd number of consecutive ¢ layers (for example,
¢, ch, ccch, but not cch or ccech and so on).

Class 1(c)

The sharing of two edges that have no vertex in common leads only to the linear chain
(BeCl,, SiS,) or to improbably large (unknown) rings formed from portions of such a chain.

(b) Structures of class 11: v; = 1,v, = 3

The sharing of each of three vertices of every tetrahedron with two other tetrahedra can be
realized in the following ways: (a) vertices only shared, (5) one edge of each tetrahedron shared,
(¢) two edges of each tetrahedron shared or (d) three edges of each tetrahedron shared.

In all the structures of this class each A atom is connected to three shared X atoms and each
shared X to three A, and therefore the possible structures are based on three-connected nets
in which A and X atoms alternate. Accordingly all polygonal circuits in the nets must have
even numbers of links.

Class 11(a)

The smallest permissible circuit is a ring of six atoms (alternately A and X) because a ring of
2A +2X implies edge-sharing. This condition excludes all three-connected polyhedra and all
two-dimensional three-connected nets other than 63.

27 Vol. 319. A
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One- and two-dimensional structures. The net 62 represents the topology of the layer of figure 21,
from which the unshared X atoms are omitted. Since the unshared vertex of each tetrahedron
may lie either above or below the plane of the paper an indefinitely large number of
configurations of this layer is possible, one of which represents the structure of AIOCI (and
GaOCl). The configuration with all unshared vertices on the same side of the plane of the
shared X atoms is our fourth example of the filling of one half of the tetrahedral interstices
between a pair of close-packed layers. Strips of this layer may be wrapped around a cylinder
to form tubular one-dimensional structures. There are two special configurations of these
chains. In one (E type) there are continuous lines of tetrahedron edges parallel to the axis of
the chain. This type of chain is possible only if the number of tetrahedra in the shortest circuit
around the tunnel is even; otherwise the continuous line of tetrahedron edges runs helically
around the surface of the cylinder. The two simplest E type chains are therefore E, and Eg,
shown in projection in figure 22. In the second configuration of a chain (F type, figure 23)
one face of each tetrahedron is normal to the chain axis, and in these chains the number of
tetrahedra in the shortest circuit around the tunnel may be even or odd. More extensive
structures are formed from these chains by joining them together so that the outer (v,) vertices
become either v,, when the composition becomes A,X,, or v, when the composition becomes
A,;X,. The structures derived from chains of these two types are summarized in table 4.

Ficure 22. The two simplest E type tubular chains (E, and Eg) viewed along their length. One edge of each
tetrahedron is perpendicular to the paper.

Ficure 23. Tubular AX, chains F,; and F, viewed along their length. One face of each tetrahedron is normal to
the chain axis.

Three-dimensional structures. These structures would be based on three-connected nets in which
A and X atoms alternate and all circuits have even numbers of links, this number being greater
than six. The simplest three-connected three-dimensional nets of this kind are uniform nets 8,
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TABLE 4. THREE-DIMENSIONAL STRUCTURES FORMED FROM THE TUBULAR AX,
CHAINS OF cLass [I(a)

E, Eq Fy F,

vy 2 vg (figure numbers)
Ay X, — 1 3 33 34 35 36
AgX, — — 4 — 54 51 —

103, and 123. It has not been ascertained whether any of these structures can be constructed
with regular tetrahedra and without any unacceptably short distances between X atoms of
different tetrahedra.

Class 11(b)

Structures of all four major types are possible, polyhedral, one-, two- and three-dimensional.

Polyhedral structures. The polyhedra defined by the A and the shared X atoms taken together
must be three-connected and must have four-gon faces. The structures derived from the cube
and from prisms do not belong to class I1(5), as noted later, but the relevant Archimedean solids
4.6% 4.6.8 and 4.6.10 produce the structures of figure 24a—¢, plates 6 and 7 and table 5. The
models illustrated in these and other stereo-pairs do not show the A atoms, for the connectors
represent shared X atoms. For this reason the polyhedra of this group are perhaps more easily
visualized in terms of the polyhedral shells outlined by the shared X atoms. These polyhedral
shells must have pairs of edge-sharing triangular faces and five edges meeting at each vertex
(see figure 25). The most sy/mmetrica] are therefore the icosahedron (3°), snub cube (3%4), and
snub dodecahedron (345)'/. In the icosahedral structure (figure 24a) tetrahedra are placed on
12 of the 20 faces of a regular icosahedron, in the second (figure 24 5) on 24 of the 32 triangular
faces of a snub cube, and in the third (figure 24¢) on 60 of the 80 faces of a snub dodecahedron.

TABLE 5. POLYHEDRAL AX, STRUCTURES OF cLAss I1(6):v; = 1,0, =3

polyhedron defined

by the A and the polyhedron defined

shared X atoms by the shared X atoms

(three-connected) formula (five-connected) figure 24
4.62 AXo, 343 (a)
4.6.8 AgyXyg 344 ()
4.6.10 AgeXis0 345 (¢)

One- and two-dimensional structures. Because all two-dimensional nets of this family must contain
4-gons the most symmetrical ones are the semi-regular nets 4.8% and 4.6.12. The AX, layers
based on these nets are illustrated in figures 25 and 26. In the layer of figure 25 we have shown
the unshared X atoms of each edge-sharing pair of tetrahedra lying on opposite sides of the
plane of the layer, because if they lie on the same side there are very short X—X distances
between these atoms (0.58 of the tetrahedron edge length). Tubular chains may be built from
strips of this net. In the portion of the net shown in figure 25 there are four vertical strings
of tetrahedra. In the tubular chain formed from a strip of this width such short X—X distances
cannot be avoided, but they do not occur in chains built from wider strips if, for example, the
unshared X atoms of both tetrahedra of alternate edge-sharing pairs lie on the outer surface
of the chain, as in figure 24 4. This chain is built from a strip of the layer six ‘strings’ in width,
and the innermost (unshared) X atoms lie at the vertices of a column of face-sharing octahedra.

27-2
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Ficure 25. AX, layer of class I1(6) based on 4.82%, a portion of which is shown at the bottom left. The heavier broken
lines connect A atoms (@) and three-connected X atoms (0) which form the underlying net.

A
A ANAT

Sy T
| |
1 l

Ficure 26. AX, layer of class II() based on 4.6.12, a portion of which is
shown at the bottom left (----).
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Tubular chains may also be formed from the 4.6.12 net, but their detailed geometry has not
been studied.

Three-dimensional structures. These must be based on three-connected nets in which A and X
atoms alternate, and the nets must contain four-gon circuits (of two A and two X atoms). The
known nets of this type are twelve of the ‘ Archimedean’ nets (Wells 1979, p. 10, 1983), namely
4.6.8,4.8.10 (two), 4.122 (five), 4. 142 (three), and 4.162% The geometry of tetrahedral AX,
structures based on these nets remains to be studied.

Class 11(c)

Only cyclic and chain structures are possible, and it is convenient to deal with the latter first
since the cyclic structures are built from portions of the chain structure. If the chain of
figure 27 is broken at any point there are two ways of choosing a second edge which has a vertex
in common with the edge already shared. There is therefore an indefinitely large number of
configurations of this chain. In the fully extended configuration of figure 274 all the shared
X atoms lie in the plane of the paper; the fourth vertex of each tetrahedron could therefore
lie to one side or the other of this plane. If any pair of unshared X atoms of adjacent tetrahedra
lie on the same side of this plane there are unacceptably short X-X distances. However,
portions of the chain with all unshared X atoms lying on the same side and consisting of even
numbers of tetrahedra may be joined end-to-end to form cyclic structures (AX,),,. In these
structures the A and shared X atoms define prisms. The first member of this family, n = 2,
belongs to class II(d), but the higher members belong to class II(c). The structures with n = 3
and 6 are illustrated in figure 284, ¢, plate 7 and in projection in figure 29; they have the
compositions A;X,, and A, X,, respectively. Since the distance between unshared X atoms of
adjacent tetrahedra approaches the value for the linear chain as n increases there is an upper
limit to the value of n (around 18-20). No cyclic structures can be formed from the
configuration of the chain of figure 27 which has unshared X atoms alternately on opposite
sides of the plane of the shared X atoms because of short X-X distances.

27
(a)

Ficure 27. Three views of the AX, chain of class IT{c).
Ficurke 29. Projections of the prismatic complexes AgX,, and A}, X,, of figure 28 (b, ¢).

Class 11(d)

The only structure found in this class is the A, X, complex of figure 284. It consists of a group
of four tetrahedra enclosing a central tetrahedral cavity. The four A atoms and the four shared
X atoms are situated at alternate vertices of a distorted cube.
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(¢) Structures of class I11: v, = 1,0, = 1,0, = 2

No structures of this class were described in the earlier account. Each tetrahedron has to
share one X with one other tetrahedron (v, = 1) and two with three other tetrahedra (v, = 2).
This could presumably be achieved in the following ways: (a) vertices only shared, or () one
edge shared, either the edge between two four-connected X atoms (b,) or the edge between
the two-connected X atom and one of the four-connected X atoms (b,). The only structures
found so far in this class are the tubular chains and layers of type 4, noted in table 2. They
project as in figure 1(4) if figure 1 (a) represents a double chain of tetrahedra normal to the
plane of the paper. The tubular chains have compositions (A,X,),, n = 2. With the tubular
chains of classes I(a) and () and II(a) and (4) they form the fifth group of tubular AX, chains.

6. TETRAHEDRAL A,X,; STRUCTURES

Compounds of composition A,X, are relatively few in number. They include oxides
(sulphides, selenides and tellurides) of elements of Groups I1I and V of the Periodic Table and
of some transition metals, including 4f and 5f metals. The small number of compounds
containing an element in two valence states (for example, T1,Cl; and Sn,S,) are not of interest
here, for apart from the fact that the known examples are not tetrahedral structures they
contain non-equivalent A atoms. The coordination numbers of A atoms in compounds A, X,
range from 3 to 7, but examples of A,X; structures built from tetrahedral AX, groups appear
to be limited to a very small number of sesquisulphides (for example Ga,S;), a group of
compounds which includes some with statistical defect sphalerite or wurtzite structures.
Table 1 shows that in any tetrahedral A, X, structure there must be at least two kinds of co-
ordination of the X atoms, in contrast to octahedral A,X, structures which include the corun-
dum (a-Al,O,) structure of 6:4 coordination.

(a) Structures of class 1: vy, = 1,0, = 3

Many of these may conveniently be derived from AX, structures of class IT (v, = 1,v; = 3)
by joining v, vertices in pairs, and the subgroups may be labelled (a)—(d) to correspond to those
of the AX, structures: (a) only vertices shared, (b) one edge shared, (¢) two edges shared, or
(d) three edges shared.

In all structures of this class each A atom is connected to three shared X atoms and each
of these X atoms is connected to three A atoms. The possible structures are therefore based
on three-connected nets in which A and X atoms alternate. Accordingly all polygonal circuits
in the nets must have even numbers of links.

Class 1(a)

The relevant AX, structures (class II) are the net of figure 21 and tubular chains formed
by wrapping strips of the net around a cylinder, the E and F type chains of figures 22 and
23. If all the v, vertices of the layer of figure 21 lie on the same side of the layer a pair of layers
related by a mirror plane form a double layer (not illustrated), but if equal numbers of the
v, vertices lie above (u) or below (D) the plane of the layer three-dimensional structures may
be formed. In the simplest structure of this family there are alternate rows of u and b tetrahedra.
If adjacent layers are related by mirror planes there is formed a structure (figure 30) in which
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Ficure 30. Elevation and projection of A,X, structure of class I(a) formed
from layers of the type shown at the right.

the X atoms occupy three-quarters of the positions of hexagonal closest packing, with alternate
layers fully and one half occupied. The analogous ‘defective cubic closest packed’ structure
is not possible because the X atoms of one uDp layer are in the positions of hexagonal closest
packing. The next simplest structure arises by rotating alternate layers through 180°, when
the X atoms occupy three-quarters of the positions of k¢ packing. Polytypes are therefore
possible. If there are pairs of rows of u and D tetrahedra in the single layer of figure 21 the
simplest structure is that of figure 31, with X atoms in three-quarters of the positions of
hexagonal closest packing.

2

Ficure 31. Elevation and projection of A, X, structure of class I(a) formed
from layers of the type shown at the right.

The oxynitride Si,N,O is an example of a structure of the type of figure 30. It consists of
puckered hexagonal nets of directly bonded Si and N atoms, the nets being bonded through
O atoms which complete the tetrahedral SiN,O coordination groups of the Si atoms. The
coordination numbers of Si, N, and O are therefore 4, 3, and 2 respectively (figure 32). The
structure of hemimorphite, Zn,(OH),Si,0,. H,O (figure 325) is of the same general type, as
may be seen by writing the formulae

Si, Si, N, O,
Zn, Si, O, O, (OH),
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Fieure 32. (a) The structure of Si,N,O (diagrammatic), (6) the structure of hemimorphite.

(The H,O molecules in hemimorphite do not form part of the three-dimensional framework
but are accommodated in the tunnels.)

The tubular chains seen in projection in figures 22 and 23 may be joined through their outer
(vy) vertices to form three-dimensional framework structures which are shown in projection in
figures 33 (E,) and 34 (Eg), 35 (F;) and 36 (F,). In the structures built from F, and F, chains
the central axes of the chains intersect the plane of projection at the nodes of the 63 and 4%
planar nets. These two structures may also be derived by stacking layers based on the
semi-regular nets 3.12? and 4.82 In the F; structure (figure 35) the X atoms occupy
three-quarters of the positions of hexagonal closest packing.

Ficure 33. Projection of A,X, structure of class I(a) built from E, chains.

Ficure 34. Projection of A,X, structure of class I(a) built from E4 chains.

The structures we have described are derivable from AX, structures by converting v, into
v, vertices, and include certain structures in which the X atoms occupy three quarters of the
positions of closest packings, 4, k¢, or more complex types of closest packing. In these structures
complete closest packed layers alternate with half-filled layers, the latter being the v, vertices of
the tetrahedra. There is another family of A, X, structures in which the X atoms occupy all the
positions of closest packing and the A atoms one third of the total number of tetrahedral
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interstices, that is, two thirds of the positions occupied in a tetrahedral AX structure. The two
simplest tetrahedral AX structures are the wurtzite (HcP) and sphalerite (ccp) structures.
These A,X,; structures may be dissected into (or built from) A,X; layers of the kind shown
in figure 6 in which every third tetrahedron has been removed from each row. The layers, in
which each tetrahedron has »; = 1 and v, = 3, are to be joined so as to leave one v, vertex,
the other three becoming v, vertices. The simplest (HcP and ccp) structures are shown in
projection in figure 374, b; they are defective wurtzite and sphalerite structures respectively.
The ordered form of Ga,S,; (Collin et al. 1976) is of the former kind, with ordered vacancies
in the wurtzite structure. Polytypes are possible, in which there are more complex types of
closest packing, and also disordered structures with statistical distribution of A atoms in two
thirds of the A positions of one of the AX structures. Structures of this kind have been suggested
for two other polymorphs of Ga,S,.

Ficure 37. (a) Hexagonal close-packed A,X; structure (defective wurtzite); (b) cubic close-packed A,X,
structure (defective sphalerite).

Class 1(b)

As in class I(a) A,X, structures are derived from AX, layers and tubular chains, in this case
the structures of class II(5). All the three-connected two-dimensional nets (of alternate A and
X atoms) on which these structures are based must contain 4-gons, and therefore the most
symmetrical ones are the semi-regular nets 4.8 and 4.6.12. The AX, layers based on these
nets are those of figures 25 and 26. The unshared X atoms of each edge-sharing pair of
tetrahedra are shown lying on opposite sides of the plane of the layer because if they lie on
the same side there are very short X—X distances between these atoms (0.58 of the tetrahedron
edge length). Since there is an indefinitely large number of ways of selecting equal numbers
of u and D vertices a family of three-dimensional A,X, structures may be built from the Liyers
of figures 25 and 26. The layers are stacked with adjacent ones related by a mirror plane so
that the pattern of D vertices of one layer corresponds to that of the U vertices of the layer below.
The simplest structure formed from the 4.8% net projects as shown at the upper right of
figure 25. The unit cell of this elegant structure contains two layers, each of four tetrahedra, that
is4(A,X,). This very simple structure built of edge-sharing pairs of tetrahedra may be described
as the A, X, analogue of the BeO structure; compare figure 25 with figure 55a.

Although certain tubular chains can be formed from strips of the two-dimensional AX,
chains they do not lead to three-dimensional A,X, structures. This would require that all v,
vertices of the AX, tubular chain lay beyond the outer surface of the chain so that the chains
could be connected together. It appears that in such structures there are inevitably some short
X-X distances, and for this reason these chains have not been considered further.
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Class 1(c) .

The sharing of two edges by each tetrahedron in the AX, structures of class II{c) leads to
the chain of figure 27 or cyclic structures formed from portions of the chain joined end-to-end.
The prismatic complexes AgX,, and A ,X,, were illustrated in figure 285, ¢ and figure 29. The
A X, structures formed from these (AX,), sub-units include the layer of which two
configurations are shown in figure 38 (compare with figure 27¢) and the double layers of
figures 39 and 40 formed from prismatic A;X,, units and based on the 6% and 4* plane nets.
Figure 41 shows the elevation of a corrugated configuration of the 4* layer. The six external »,
vertices of the A X,, complex lie at the vertices of a non-regular octahedron. These units may
therefore form a ‘sheared’ ReOj,-like structure, A;X,, replacing a single octahedron of that
structure. The composition is A, X, as each unit is joined to six others through v, vertices. This
structure, built with collinear X bonds at the v, vertices, is shown in projection in figure 42.

(4)

Ficure 38. A, X, layers of class I(c) formed from the chain of figure 27.

Class 1(d)

The single AX, structure of class II(d) is the finite A, X, complex of figure 284 formed from
four tetrahedra enclosing a tetrahedral cavity. The four outer (v,) vertices form a tetrahedral
group, and it might be expected that such finite units could form A;X, structures analogous
to those formed by simple tetrahedra, A, X, replacing AX,; compare with the replacement of
AX, tetrahedra by ‘super-tetrahedra’ A, X,, to form AX, structures. Such structures would
include the Hgl, layer, based on 4%, tubular chains formed from strips of this layer wrapped
around a cylinder and structures based on three-dimensional four-connected nets of which the
simplest is the cubic diamond net 6°. However, it appears that the only structures in which
there are acceptable X-X distances are three-dimensional structures based on the cubic and
hexagonal diamond nets, the nets, 3.6% 3.7% 4.6% and possibly others which have been
illustrated as stereoscopic pairs in Wells (1977, 1979).

28-2
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Ficure 39. Double A,X; layer based on 6°.
Ficure 40. Double A,X, layer based on 4* (plan).

Ficure 41. Elevation of layer of figure 40.

(b) Structures of class 11: v, = 2, b4 =2

- In the first structure of this class (table 6) only vertices are shared; in the others one or more
edges are shared. The double layer of figure 43 is formed from two simple vertex-sharing AX,
layers (figure 9a) related by the translation AB. Only two tetrahedra of the upper layer are
illustrated, sufficient to show that the bond arrangement at an X atom is tetrahedral. If two
AX, layers of figure 9a are related by a mirror plane parallel to the plane of the layer there
is formed a double layer (figure 44) in which each tetrahedron shares one edge (and two
vertices). In this and in all the remaining structures of table 6 there is square planar
coordination of the X atoms. ,

Figure 1a represents a pair of tetrahedra sharing one edge which is normal to the plane of
the paper and represented by a double circle; the composition is (AX,;), (v, = 2,v, = 2). This
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Ficurk 42. Three-dimensional A,X, structure formed from prismatic AgX,, units.

TaBLE 6. A,X, STRUCTURES OF cLAss 11

tetrahedra sharing type of structure

vertices only double layer

one edge and two vertices double layer
63

three-dimensional structures | 3.12?%
projecting as 4.8

4.6.12

two edges single layer

three edges double chain

figure

43
44
1¢
13
14
15
45
see figure 61

Ficure 43. Double vertex-sharing A, X, layer of class 11. 0, v,; @, v, vertices.
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Ficure 44. Two elevations of the double A,X; layer formed from two Hgl, layers related by a mirror plane.
0, v,; @, vy vertices. In (a) the v, vertices and in (b) the v, vertices lie on lines normal to the paper.

diagram is also the projection of an infinite chain of tetrahedra normal to the plane of the paper,
where the double circle represents a continuous row of shared edges, that is, a string of v,
vertices. This infinite chain has the composition A, X, (v; = 2,0, = 2). If these chains are joined
so as to convert the v, into v, vertices the composition becomes A,X,, as in the double layer
of figure 44. Alternatively, they may be joined to form three-dimensional structures that
project as figure 1 (¢) or as figures 13-15.

A single layer in which each tetrahedron shares two edges is formed from edge-sharing
(BeCl,) chains joined as in figure 45. Three edges are shared by each tetrahedron in a double

(
Il@lllll ||||x@:||||

Ficure 45. Single A X layer of class II. In the plan (¢) @ represents a shared edge normal to the paper (i.e. two
v, vertices) and in the elevation () @ represents a continuous line of shared edges normal to the paper (i.e.
a row of v, vertices).
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chain which represents the structure of the anion in CsCu,Cl,, CsAg,I;, and C;H,N,(Cu,Br;).
This chain is simply a strip, two tetrahedra in width, of the OPb layer of figure 61.

(¢) Structures of class I11: v, = 1,0, = 3

The only example we have found of a structure in this class is the layer of figure 46. One
half of the unshared (v,) vertices must lie on each side of the plane defined by the v, vertices
to avoid unacceptably short X-X distances. The arrangement of six tetrahedra around each
X atom is the symmetrical one illustrated in figure 47 a.

FIGUuRE 46. A, X, layer of class III.

Ficure 47. Types of six-coordination of X atoms (see text).

7. TETRAHEDRAL A ;X, STRUGCTURES

Compounds AgX, are necessarily few in number for purely ‘chemical’ reasons. They include
the nitrides of Si and Ge; larger A atoms prefer a higher coordination number, as in the 8.6
coordinated structure of Th,P,. Oxides such as Fe,O, contain metal atoms in two valence states
and two different types of coordination by oxygen, as in the spinel structure. Ternary
compounds A,BX, include some in which one-third of the A positions in an A;X, structure
are occupied by atoms of a second element. They fall into two groups (table 7). The oxides
and fluorides are structurally different from the compounds of the second group which includes
sulphides, selenides, tellurides and iodides. The compounds of group (a) all have structures

TABLE 7. STRUCTURES OF TERNARY COMPOUNDs A,BX,
(@)
phenacite structure

Li,SeO,  Li,CrO, Li,M0oO, Li,WO,  Li,BeF,
Be,SiO,  Be,GeO, Zn,Si0, Zn,GeO, Li,ZnF,

AL CdO,
(4)
defective defective
sphalerite structure wurtzite structure
regular random regular random

AL CdS, B-Cu,Hgl, a-Ag,Hgl, B-Ga,CdS, B-Al,ZnS,
a-Ga,CdS,t B-Ag,Hgl, a-Cu,Hgl, — —

In,CdSe, — Ga,HgTe, — —

T Ga,CdS, has two forms. The stable form is tetragonal (/4) with Z = 14 (sphalerite superstructure) and a
quenched (B) form has a wurtzite superstructure with Z = 28 and space group Pra2; (Pardo et al. 1984).
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of the phenacite type, which is described shortly, whereas those of group (4) have defective
sphalerite or wurtzite structures in which there is either regular or random arrangement of the
vacancies in the parent structure. Compounds of the second group are numerous, for they
include not only compounds of metals which are normally tetrahedrally coordinated in their
sulphides etc. but also 3d elements which in the +2 state do not usually exhibit tetrahedral
coordination. Examples include Ga,MS, in which M is Mn, Fe, or Co (Pardo 1977). An
important difference between the phenacite-like structures of the compounds of group (a) and
the structures of compounds of group (4) is that in the former the coordination of the X atoms
is trigonal coplanar (or approximately so), whereas in the defect sphalerite and wurtzite
structures the coordination of X is pyramidal, ideally three of the four tetrahedral positions.
This is presumably the reason why the more ionic compounds adopt the phenacite structure
and the sulphides, etc., the structures with pyramidal coordination of X.

Structures of class 1: vy = 4

All the tetrahedral A;X, structures we have found belong to this class. These structures will
be illustrated here as assemblies of tetrahedra, but we should mention an alternative way of
describing these structures. The connected systems of A and X atoms in these A;X, structures
are three- and four-connected nets in which A and X atoms alternate. The sum of the numbers
of three- and four-connected points in the repeat unit (unit cell) of such a net must be a multiple
of seven. We call this number Z’ to distinguish it from Z, which is conventionally used for the
number of formula-masses in the unit cell of a crystal structure. For example, if the unit cell
of an A X, structure contains only 3A and 4X atoms Z=1 and Z' = 7. The only nets
previously described in this Z" = 7m family (Wells 1979) were one with Z" = 7 and two with
Z’ = 14, and one of the last two is not of interest here because the A,;X, structure, (Pt,0,)Na,,
based on the net has square coplanar coordination of the A atoms. The present study has led
to the recognition of three more nets with Z” = 14 (Wells 1986).

The structures we shall describe first can be built from layers of the two kinds shown in
figure 484 or b, which have the composition A;X,. In these layers the X atoms at the bases of
the tetrahedra form a complete close-packed layer, and the remaining (upper) vertices are in
three-quarters of the positions of a second close-packed layer; contrast the AX, layers of
figures 16 and 17, in which the X atoms form two complete close-packed layers. Two of the layers
of figure 48 or b may be joined to form a double layer if the unshared vertices of the tetrahedra
of the lower layer are directed upwards and those of the upper layer downwards (figure 49aq, b).
In these double layers each tetrahedron shares two edges, and the composition is A;X,. (The
double layer of figure 494 may obviously be built from the prismatic AgX,, units of figure 284
or figure 294.) There are two kinds of three-coordination of the X atoms in these double layers,
and this is also true of the three-dimensional structures formed from the layers of figure 48.
In these three-dimensional structures, in which only vertices are shared, the X atoms form a
complete close-packed assembly in which the A atoms occupy three quarters of the tetrahedral
positions occupied in the parent AX structure. The two simplest structures are therefore
defective sphalerite (ccP) and wurtzite (HCP) structures; polytypes are possible as in the case
of the AX structures. Since each of the layers of figure 48 forms a structure with cubic or
hexagonal close-packed X atoms there are four three-dimensional structures to be described.

If the layers of figure 484 are stacked so that successive layers are related by the translation
indicated by the arrow there is formed a structure in which there is cubic closest packing of
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¥
ABD

ANANAN

Ficure 48. Two layers of composition A;X, (see text).

the X atoms. This structure is referable to a unit cell containing one A;X, unit which is shown
in figure 50. It is based on the simplest known three-dimensional (3,4)-connected net of the
7m family, having Z’ = 7, and the positions of the A and X atoms in the unit cell are 3(d),
100, and 4(e), xxx with x = 1, in the space group P43m (no. 215). The structure of In,CdSe,
is based on this net, that is, it is a superstructure of the (unknown) cubic A X, structure of
figure 50. It retains the simple (Z" = 7) cell but owing to the non-equivalence of the A atoms
the space group is P42m compared with P43m for the cubic structure. If the A;X, layers of
figure 484 are stacked with successive layers related by a rotation through 60° the result is a
structure in which there is hexagonal closest packing of the X atoms. This structure is referable
to the hexagonal cell shown in projection in figure 51. The unit cell contains two A, X, and
therefore the net on which it is based has Z” = 14. Evidently this structure could be built from
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Ficure 49. Double A;X, layers formed from the layers of figure 48.
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Ficure 50. The cubic tetrahedral AzX, structure based on the (three, four)-connected net with Z’ = 17, Heavy and
light lines outline tetrahedra at heights 0 and 1.

Ficure 51. Unit cell of hexagonal A;X, structure formed from the layer of figure 48 (a).
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the F, chains of figure 23 joined together at threefold junctions; these chains form the A, X,
structure of figure 35 if joined through v, vertices.

Corresponding to the cubic and hexagonal structures formed from the layer of figure 48 (a)
there are ccp and Hcp structures formed from the layer of 48 (b). The first, like the cubic
structure described above, is a defective sphalerite structure. It represents the structure of the
ordered (B) form of Cu,Hgl, and other compounds listed in table 7. The relation of this
tetragonal structure to the cubic structure may be more easily seen from the projections of these
tetrahedral structures along a cubic axis and tetragonal ¢ axis respectively (figure 524, 4). To
simplify the diagrams a Hgl, layer is represented by the diagonal lines which are the continuous
lines of tetrahedron edges on the upper and lower surfaces of the layer (compare figure 9a).
Layers of the Hgl, type at the heights indicated in figure 52 are joined through tetrahedra
in one half of the available positions. The arrangement of metal atoms of figure 524 implies
a tetragonal cell with doubled ¢ axis. There is a second tetragonal A,BX, structure (B-Ag,HgI,)
in which the same positions are occupied by B and X atoms but the distribution of the A atoms
in two sets of equivalent positions leads to lower symmetry; space group /4 (no. 82) instead
of 142m (no. 121).
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Ficure 52. Projections of cubic and tetragonal A;X, structures (see text).

The fourth structure of this group is the Hcp structure formed from the layer of figure 485
if alternate layers are rotated through 180°. (In the ccp structure all layers are similarly
oriented and related by a simple translation.) This HGP structure is repeated after two layers,
as shown in the projection of figure 53. It is referable to an orthogonal unit cell containing
2 A,X, and is therefore the third member of this family of structures based on three-dimensional
nets with Z” = 14. It may be helpful to summarize the structures formed from the layers of
figure 484, b in table 8. As layers of each type may be joined to give either cubic or hexagonal
closest packing of the X atoms an indefinitely large number of more complex polytypes may
be built.

The tetrahedral structure shown projected along a sixfold axis in figure 54 is based on a
fourth net with Z’ = 14; a prominent feature is the hexagonal tunnel of the E4 type. This net
represents the structure of B-Si;N, (Goodman & O’Keeffe 1980) which has the most
symmetrical configuration of the net (space group P6,/m). The structure of a-Si;N, has a less
regular arrangement of the SiN, groups along the ¢ axis which requires a doubled ¢
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Ficure 54. The structure of B-Si;N, shown as a system of tetrahedral SiN, groups. @, Si atoms; O,
N atoms;©), columns of tetrahedron edges normal to the plane of the paper.

TaBLE 8. DERIVATION OF A,X, STRUCTURES FROM A,;X,; LAYERS

single (A;X;) layer double (A;X,) layer  three-dimensional structure  Z’

figure 484 figure 494 figures 50, 524 ccp 7
figure 51 HCP 14
figure 485 figure 495 figure 524 ccp 14

figure 53 HCP 14
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parameter, 4 Si;N, in the unit cell, and space group P31¢ (Marchand et al. 1967). In this
structure the hexagonal tunnels are interrupted to form two large closed interstices in each unit
cell at intervals of ic. Other structures of the same topological type include those of the
polymorphs of Ge,N, and numerous ternary complex oxides and halides A,BX, with the
phenacite structure (table 7). The non-equivalence of the two kinds of tetrahedrally coordinated
atom and minor adjustments in the atomic positions lead to lower symmetry, as in the case
of the mineral phenacite, Be,SiO,, which has rhombohedral symmetry (R3) and 18 A,BX, in
the unit cell.

8. TETRAHEDRAL AX STRUCTURES
(a) Structures of class 1: v, = 4

In this class both the A and X atoms are four-connected; the structures may therefore be
derived from four-connected nets in which A and X atoms alternate. Such nets are possible
structures for elements forming four bonds, and corresponding to the two simplest uniform (69)
three-dimensional four-connected nets of cubic and hexagonal diamond, there are the
sphalerite (zinc blende) and wurtzite structures of ZnS and other chalcogenides. They are built
from AX, tetrahedra (ZnS, or SZn,) which share only vertices, each vertex being common
to four tetrahedra. In other structures of this class AX, tetrahedra share edges, and we may
conveniently list them in order of increasing numbers of shared edges (table 9).

TABLE 9. TETRAHEDRAL EDGE-SHARING AX STRUCTURES OF GLASS |

number of
edges shared figure coordination of X examples
1 55 tetrahedral BeO (AlL1)O,
2 56 coplanar SPt OPd
3 58 skew tetrahedral —
4 60 pyramidal OPb LiOH

One edge shared. In the structure of B-BeO (and isostructural y-AlLiO,) pairs of edge-sharing
tetrahedra are joined to form a three-dimensional structure in which each O atom is also in
tetrahedral coordination and these atoms are arranged in approximately hexagonal closest
packing. The arrangement of the O atoms (figure 55) is essentially the same as in the rutile
(TiO,) structure; pairs of edge-sharing tetrahedra occupy the spaces between the octahedra
in the rutile structure.

Two edges shared. Chains in which each tetrahedron shares two (¢rans) edges, as in BeCl, or
SiS,, are joined as in figure 56. In the projection (a) these chains are perpendicular to, and
in the elevation () parallel to, the plane of the paper. In this structure X has four coplanar
A neighbours. In the ‘ideal’ structure with (cubic) closest packing of the X atoms and regular
tetrahedral coordination of A the interbond angles at X would be 701° and 109L° (two of each).
These are so far removed from the preferred values for dsp? hybridization (four of 90°) that
the structures of actual compounds are considerably different from the ideal structure. A
number of compounds have structures of this basic topological type, and of these the most
symmetrical is the tetragonal structure of SPt and OPd. (A less symmetrical structure is
adopted by SPd and an appreciably less symmetrical variant by OCu and OAg.) In SPt the
angles at S are two of 974° and four of 115°, whereas those at Pt are two of 821° and two of
974°.
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Froure 55. Idealized BeO structure: (a) elevation, with Hcp layers normal to the plane of the paper and shared
edges drawn with heavy lines; () view in direction of the arrow in (a) showing the four-coordination of X.

(a) ()

N\ /N /N /N

Ficure 56. Plan and elevation of the structure of SPt. Heavy lines (full and broken) represent shared edges,
and in (b) © represent continuous lines of shared edges normal to the paper.

Three edges shared. Structures in which each tetrahedron shares three edges include a layer
structure and two three-dimensional structures. The AX layer (figure 57) is formed by filling
all the tetrahedral interstices between a pair of closest packed X atoms.

We have described two special configurations of the AX, layers of class I(5) based on 62 and
other three-connected planar nets, in which the edges shared between each pair of tetrahedra
are (a) perpendicular to the plane of the layer (figure 1¢) or (5) inclined to that plane (figure 16).
In the layers of type (4) based on 6® and 4.8% the X atoms form two complete cp layers,
between which the A atoms occupy one half of the tetrahedral interstices, while in those based
on 3.12% and 4.6.12 the X atoms occupy respectively 2 and 2 of the cp positions. The layers
of type (a) may be superposed to form three-dimensional structures of composition A, X  which
have already been described. The layers of type (b) on the other hand may be stacked to form
three-dimensional AX structures of class I. We consider first the 62 layer of figure 16, the
right-hand portion of which shows two rings of six tetrahedra. If successive layers are related
by the translation AB in figure 16 there is cubic closest packing of the X atoms. Figure 58 shows
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Ficure 57. AX layer in which all tetrahedral holes are filled between two cp X layers.
Ficure 58. The three-dimensional AX structure formed from the layer of figure 16.

two layers (full and broken lines) that should be compared with figure 16. In this three-
dimensional structure each tetrahedron shares three edges, and the coordination of all X atoms
is the skew tetrahedral arrangement of figure 594. The layers based on 4.8?2 (figure 17) may
also be stacked to form a ccp structure in which each tetrahedron shares three edges (figure 60);
in this structure there are two types of four-coordination of the X atoms (figure 59a, b).
In the layers based on 3.12% and 4.6.12 (figures 18 and 19) there are not complete cp layers
of X atoms. No edge-sharing three-dimensional structures are possible, but structures may be
built in which tetrahedra share faces and X atoms occupy 2 or 3 of the positions of hexagonal
closest packing.

(a)

Ficure 59. Types of four-coordination in AX structures derived from the
layers of figures 16 and 17.

Four edges shared. Four edges of each tetrahedron are shared in the layer of figure 61, which
is simply a slice of the antifluorite structure cut perpendicularly to a fourfold axis; compare
with the layer of figure 57 which is a slice of the same structure cut perpendicularly to a
threefold axis. This layer is the idealized structure of a layer of the OPb or LiOH structures,
in which the O or Li atoms respectively are in tetrahedral coordination. The neighbours of
an X atom (Pb or OH) are four A atoms at the corners of the base of a tetragonal pyramid
with X at the apex.
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Ficure 61. One layer of the structure of OPb or LiOH.

(b) Structures of class I1: vy = 1,0, =3

The double layer of figure 62 is formed from the AX, chains of figure 27 (v, = 1,v, = 3)
by sharing the edges drawn with heavy full lines in figure 275 with those shown as broken lines.
It is necessary to rotate alternate chains through 180° in the plane of the paper; otherwise the

Ficure 62. Double AX layer of class 11: plan and elevation.
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AX layer of figure 57 is formed. In the double layer of figure 62 each tetrahedron shares four
edges. The arrangement of the six tetrahedra meeting at an X atom is that of figure 47 5.

The A, X, layer (figure 46) of class III (v, = 1,9, = 3) can be joined in obvious ways to form
three-dimensional structures, pairs of v, vertices being converted into v, vertices. The type of
six-coordination of X (figure 474) is, of course, the same as in the layer of figure 46. The X
atoms in these structures are arranged in closest packing. As the layers may be joined so that
the X layers are in the positions of % or ¢ packing there is an indefinite number of polytypes.
However, there is the same limitation on types of closest packing as in the AX, structures based
on 103-b or 103-c (see figure 20) for alternate layers of X atoms must be ¢. The cp symbol must
therefore contain an odd number of consecutive ¢ layers, as in ¢ or ch.
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Ficure 63. The three-dimensional A,X; structure of class I.

9. TETRAHEDRAL A, X, STRUCTURES

One structure has been found in each of the classes I and II.

(a) Structures of class 1: v, = 1,9, = 3

The three-dimensional structure of figure 63 is formed from the AX layer of figure 62 by
joining the v, vertices in pairs to become v, vertices. The AX layer is perpendicular to the paper
in the end-on view of figure 624 and also in figure 63 where it is rotated through 90°.

(b) Structures of class 11: v, = 2,04 = 2

A double layer of composition A,;X, is formed from two AX layers of figure 61 related by
a mirror plane parallel to the plane of the layer. Alternatively, it is a slice two tetrahedra thick
of the antifluorite structure. In this double layer, which represents the structure of the anion
in K(Cu,S,), each tetrahedron shares five edges.

10. TETRAHEDRAL A X, STRUCTURES

The single solution (v; = 4) of our equations for this composition implies structures of 4.6
coordination. A thorough investigation of tetrahedral A,X, structures would require the
examination of all structures based on four- and six-connected nets which can be built with
regular tetrahedral coordination of A and acceptable distances between X atoms of different

30 Vol. 319. A



332 A.F. WELLS

AX, tetrahedra. This has not been carried out; we restrict ourselves here to the structures of
table 10. The omission from this table of an important A,;X, structure of 4.6 coordination,
the corundum structure of a-O,Al, and other sesquioxides, calls for comment because the
structure may be represented as a connected three-dimensional system of either octahedral AlO,
or tetrahedral OAl, groups. The metal ions occupy octahedral interstices in a hexagonal close
packing of oxide ions. The (idealized) structure may be built of regular octahedra (hence its
inclusion in a survey of octahedral structures (Wells 1984¢), but because the tetrahedral
coordination of O is very irregular (Al-O—Al angles 85°, 94° (two), 120°, and 132° (two)) it
is necessary to show that the framework cannot be built from regular tetrahedra. This can be
done by examining the way in which the tetrahedral OAIl, groups are joined together. It is
found that the group of six OAl, tetrahedra which meet at each vertex (Al) consists of a group
of three with a common edge plus three which have only one vertex in common. This
arrangement is not possible for regular tetrahedra if we insist on acceptable distances between
Al atoms of different tetrahedra.

TABLE 10. STRUCTURES OF COMPOUNDS A X,

Nitrides M3N,, phosphides M P, and arsenides M;As,

Be? Mg Zn Cd Ca(a)
N A A A A A
P A A B B —
As — A B B —
2 Also a high-temperature form (Hall et al. 1969) A, ‘anti-Mn,O,’ structure; B, Zn,As, or closely related

structure.
Sesquioxides O3M, of Mn, Sc, Y, In, T1 and some 4f and 5f metals.

In contrast to the hexagonal closest packing of A atoms (ions) in the corundum structure,
the positions of the X atoms in the structures of table 10 are those of cubic closest packing. We
shall describe the idealized cp structures, it being understood that in actual structures there
may be considerable departures from perfect closest packing of the X atoms.

The formation of an A,X, structure with tetrahedral coordination of A in a closest packing
of X atoms results from occupancy of three quarters of the tetrahedral interstices. Filling of
more than one half of these interstices in hexagonal closest packing leads to pairs of face-sharing
tetrahedral AX, groups, and therefore the Hcp A X, structures are not found. However,
occupancy of three quarters of the tetrahedral interstices in cubic closest packing gives a family
of structures which includes those of table 10. The sharing of faces between AX, groups can
also be avoided in k¢ (ABAC...) packing of X atoms, as in the high-temperature form of Be,N,
(Hall et al. 1969). In the nitrides, phosphides, and arsenides, A,X,, the metal atoms (ions) are
four-coordinated and N (P, As) close-packed; in the sesquioxides the oxygen atoms are
four-coordinated and the metal atoms are in the positions of cubic closest packing.

The structure in which all tetrahedral interstices are occupied by A atoms in a cubic closest
packing of X atoms is the antifluorite structure A,X, in which X has eight A neighbours
arranged at the vertices of a cube. The projection of this structure is the same as that of one
layer of the structure (figure 61), where it can be seen that along any horizontal or vertical
row successive tetrahedra are related by a rotation through 90°. Along a cubic axis therefore
alternate tetrahedra are in the same orientation, that is, the pattern repeats after two tetrahedra.
In the three-dimensional A,X structure the smallest cubic (face-centred) unit cell contains
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eight tetrahedrally coordinated A atoms and 4 X atoms the latter having 8 A neighbours
situated at the vertices of a cube (figure 64). The A,;X, structures arise by removal of one
quarter of the A atoms from the A,X structure, leaving X with six neighbours at six of the
vertices of a cube. The missing atoms are those at the ends of an edge (E), a face diagonal (F),
or a body-diagonal (B). These coordination groups are illustrated in figure 65, in which the
lower diagrams show how these groups appear in the projections of figure 66. The A atoms
in the A,X structure lie at the nodes of a primitive cubic lattice with unit translation equal
to one half that of the tetrahedral structure, and therefore the positions of the A atoms in the

A,X, structures may be found by removing in a regular way one quarter of the points of a
primitive cubic lattice. Of the four ways of doing this (figure 66), one (F,) is referable to a unit

cell containing three A and the others to cells containing six A. Apparently there are no
examples of compounds with these simple structures. All the structures E, F, and B (but
not F,) of figure 66 may be formed by stacking the layer of figure 674, which has the simplest
possible arrangement of vacancies. (As an isolated layer this has the composition A;X,; it is not
included with A X, structures of class I (v, = 4) because some tetrahedra share two and
others four edges.)
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Ficure 64. Projection of the ccp antifluorite A,X structure shown as a
system of edge-sharing tetrahedral AX, groups.
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Ficure 65. The (idealized) coordination groups E, ¥ and B in AyX, structures.
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Fy E B

Ficure 66. The four simplest A;X, structures derived from the antifluorite structure (figure 64) by removing one
quarter of the tetrahedrally coordinated A atoms. @ and © represent A atoms at heights 0 and }, and X (shown
only in E) mark the positions of the cap X atoms at heights { and §.
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Ficure 67. Two arrangements, (a) and (), of vacancies in a layer of
tetrahedra in A3X, structures.

In O;Mn, the pattern of vacancies in a (100) layer is that of figure 675, and four layers of
this kind form the repeat unit. Because there are many ways of arranging the vacancies in the
tetrahedral positions there is an indefinitely large number of structures with E-, F- or B-type
six-coordination groups or combinations of these, but observed structures favour F or B types.
The majority of A, X, compounds of table 10 adopt the O,Mn, structure, in which the unit
cell contains 16 formula-masses and there is F-type coordination of three quarters of the metal
atoms and B-type coordination of the remainder. In Cd,;As, on the other hand there is F-type
coordination of the metal atoms in a complex structure with 32 Cd,As, in the (tetragonal) unit
cell. Owing to the arrangements of vacant A sites and also to small distortions from the ideal
ccp structure few A, X, compounds have cubic symmetry, including O,Mn, itself, though the
mineral bixbyite, O,(Fe, Mn),, is cubic, as also is O,In,. There has been some difference of
opinion concerning the structures of Zn,P,, Zn,As,, Cd,P,, and Cd,As,, which have closely
related structures or possibly essentially the same structure. The latest single crystal study of
Cd,As, (Steigmann & Goodyear 1968) led to a tetragonal structure referable to a unit cell
containing 32 Cd,;As, in which the arrangement of vacancies in the tetrahedral interstices of
a cp assembly of As atoms is consistent with the space group /4, ¢d. The structure is more
complex than that of O,Mn, though the arrangement of vacancies in any one of the eight layers
is the same as that in O;Mn, (figure 676). In all these A,X, structures there are departures
from the ideal structure with cp X atoms and the six-coordination groups described above.
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TaABLE 11. EDGE-SHARING STRUCTURES OF THE ANTIFLUORITE FAMILY

number of
edges shared 1 2 3 4 5 6
formula AX, AX, A X, AX AX, A, X
type of structure finite (dimer) chain  double chain  layer double layer  three-dimensional

11. TETRAHEDRAL A,X STRUGCTURE

The solution vg = 4 is realized if all the tetrahedral interstices in a cubic closest packing of
X atoms are occupied by A atoms when each X is surrounded by eight A atoms at the vertices
of a cube. This is the antifluorite structure of, for example, the oxides M,0O of Li, Na, K and
Rb. A model can be constructed by stacking the AX layers of figure 61 so that the two
remaining edges of each tetrahedron are shared; this is the last member of the family of
structures of table 11.
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Ficure 2. The polyhedral (A,X;), complexes A;X, o, AgXqps and AyyX;,. In models illustrated
by stereo-pairs rubber connectors represent X atoms.






Ficure 10. The polyhedral structures (AX,),, of table 3 based on (a) pentagonal dodecahedron, () truncated cube,
(¢) truncated octahedron, () truncated cuboctahedron, (¢) truncated dodecahedron, (f) truncated icosahedron,
(g) truncated 1cosidodecahedron.






FIGURE 12. (@) Prismatic structure A,,X, formed from the chain 4, (b)—(d) tubular chains (see text).
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FIGURE 24. (a)—(¢) Polyhedral AX, complexes of class 11(4): (a) icosahedron A, X,,, (b) snub cube A,,X,q, (¢) snub
dodecahedron Ag,X,,y, (d) tubular AX, chain of class I1(4) (see text).
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FiGure 28. Three finite (AX,),, complexes: (a) A, X; of class 11(d), (b) and
() AgX,s and A,,X,, of class 11(¢).



